skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Negro, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We study solvable deformations of two-dimensional quantum field theories driven by a bilinear operator constructed from a pair of conserved U(1) currents J a . We propose a quantum formulation of these deformations, based on the gauging of the corresponding symmetries in a path integral. This formalism leads to an exact dressing of the S -matrix of the system, similarly as what happens in the case of a $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ deformation. For conformal theories the deformations under study are expected to be exactly marginal. Still, a peculiar situation might arise when the conserved currents J a are not well-defined local operators in the original theory. A simple example of this kind of system is provided by rotation currents in a theory of multiple free, massless, non-compact bosons. We verify that, somewhat unexpectedly, such a theory is indeed still conformal after deformation and that it coincides with a TsT transformation of the original system. We then extend our formalism to the case in which the conserved currents are non-Abelian and point out its connection with Deformed T-dual Models and homogeneous Yang-Baxter deformations. In this case as well the deformation is based on a gauging of the symmetries involved and it turns out to be non-trivial only if the symmetry group admits a non-trivial central extension. Finally we apply what we learned by relating the $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ deformation to the central extension of the two-dimensional Poincaré algebra. 
    more » « less
  2. A bstract The ODE/IM correspondence is an exact link between classical and quantum integrable models. The primary purpose of this work is to show that it remains valid after $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ perturbation on both sides of the correspondence. In particular, we prove that the deformed Lax pair of the sinh-Gordon model, obtained from the unperturbed one through a dynamical change of coordinates, leads to the same Burgers-type equation governing the quantum spectral flow induced by $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ . Our main conclusions have general validity, as the analysis may be easily adapted to all the known ODE/IM examples involving integrable quantum field theories. 
    more » « less
  3. A bstract We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T $$ \overline{\mathrm{T}} $$ T ¯ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S -matrices describing the Φ 1 , 3 integrable deformation of non-unitary minimal models $$ \mathcal{M} $$ M 2 , 2 n +3 . 
    more » « less
  4. A bstract We study solutions of the Thermodynamic Bethe Ansatz equations for relativistic theories defined by the factorizable S -matrix of an integrable QFT deformed by CDD factors. Such S -matrices appear under generalized TTbar deformations of integrable QFT by special irrelevant operators. The TBA equations, of course, determine the ground state energy E ( R ) of the finite-size system, with the spatial coordinate compactified on a circle of circumference R . We limit attention to theories involving just one kind of stable particles, and consider deformations of the trivial (free fermion or boson) S -matrix by CDD factors with two elementary poles and regular high energy asymptotics — the “2CDD model”. We find that for all values of the parameters (positions of the CDD poles) the TBA equations exhibit two real solutions at R greater than a certain parameter-dependent value R * , which we refer to as the primary and secondary branches. The primary branch is identified with the standard iterative solution, while the secondary one is unstable against iterations and needs to be accessed through an alternative numerical method known as pseudo-arc-length continuation. The two branches merge at the “turning point” R * (a square-root branching point). The singularity signals a Hagedorn behavior of the density of high energy states of the deformed theories, a feature incompatible with the Wilsonian notion of a local QFT originating from a UV fixed point, but typical for string theories. This behavior of E ( R ) is qualitatively the same as the one for standard TTbar deformations of local QFT. 
    more » « less